Oscilaciones: MAS  
 

Autor de Applet: Curso Física por Ordenador del autor: Profesor Ángel Franco García, de la Escuela Universitaria de Ingeniería Técnica Industrial de Eibar,  España.

http://www.sc.ehu.es/sbweb/fisica/default.htm

 
   

El estudio del oscilador armónico constituye en Física un capítulo muy importante, ya que son muchos los sistemas físicos oscilantes que se dan en la naturaleza y que han sido producidos por el hombre.

 

Definición

Una partícula describe un Movimiento Armónico Simple (M.A.S.) cuando se mueve a lo largo del eje X, estando su posición x dada en función del tiempo t por la ecuación

donde

  • A es la amplitud.
  • w la frecuencia angular.
  • w t+j la fase.
  • j la fase inicial.

Las características de un M.A.S. son:

  • Como los valores máximo y mínimo de la función seno son +1 y -1, el movimiento se realiza en una región del eje X comprendida entre +A y -A.
  • La función seno es periódica y se repite cada 2p, por tanto, el movimiento se repite cuando el argumento de la función seno se incrementa en 2p, es decir, cuando transcurre un tiempo P tal que w(t+P)+j=w t+j+2p .

 

Cinemática de un M.A.S.

En un movimiento rectilíneo, dada la posición de un móvil, obtenemos la velocidad derivando respecto del tiempo y luego, la aceleración derivando la expresión de la velocidad.

La posición del móvil que describe un M.A.S. en función del tiempo viene dada por la ecuación

Derivando con respecto al tiempo, obtenemos la velocidad del móvil

Derivando de nuevo respecto del tiempo, obtenemos la aceleración del móvil

Este resultado se suele expresar en forma de ecuación diferencial

Esta es la ecuación diferencial de un MAS donde x puede ser cualquier magnitud: un desplazamiento lineal, un desplazamiento angular, la carga de un condensador, una temperatura, etc.

Puede comprobarse fácilmente que la solución de esta ecuación diferencial es

x=A sen(w t+j )

Condiciones iniciales

Conociendo la posición inicial x0 y la velocidad inicial v0 en el instante t=0.

x0=A·senj
v0=Aw·
cosj

se determina la amplitud A y la fase inicial φ

 

Dinámica de un M.A.S.

Aplicando la segunda ley de Newton obtenemos la expresión de la fuerza necesaria para que un móvil de masa m describa un M.A.S. Esta fuerza es proporcional al desplazamiento x y de sentido contrario a éste.

Dicha fuerza es conservativa y la energía potencial Ep correspondiente se halla integrando

Se ha tomado como nivel cero de la energía potencial Ep=0 cuando el móvil está en el origen, x=0.

La energía total E, es la suma de la energía cinética Ek y de la energía potencial Ep. Se puede verificar que la energía total es constante e igual a

 

Curvas de energía potencial

En el siguiente applet vamos a  interpretar gráficamente las relaciones energéticas mediante la representación de la curva de la energía potencial de una partícula de masa m unida a un muelle elástico de constante k, Ep=kx2/2. Esta función representa una parábola cuyo vértice está en el origen, que tiene un mínimo en x=0 cuyo valor es Ep=0.

Las región donde se puede mover la partícula está determinada por la condición de que la energía cinética ha de ser mayor o igual a cero Ek>=0. En otras palabras, que la energía total sea mayor o igual que la energía potencial E>=Ep. Si la partícula tiene una energía total E, la partícula solamente se podrá mover en la región comprendida entre -A y +A, siendo A la amplitud de su M.A.S.

En el applet  podemos observar como cambian los valores de la energía cinética (en color rojo) y potencial (en color azul) a medida que se mueve la partícula a lo largo del eje X.

El módulo y el sentido de la fuerza vienen dados por la pendiente de la recta tangente cambiada de signo. Por tanto, la fuerza que actúa sobre la partícula es negativa a la derecha del origen y positiva a la izquierda.

En el origen la pendiente es nula, la fuerza es nula, una situación de equilibrio, que por coincidir con un mínimo de la energía potencial es de carácter estable.