Física atómica : Spin del electrón  
 

Autor de Applet: Curso Física por Ordenador del autor: Profesor Ángel Franco García, de la Escuela Universitaria de Ingeniería Técnica Industrial de Eibar,  España.

http://www.sc.ehu.es/sbweb/fisica/default.htm

 
 

La Tierra además de su movimiento orbital alrededor del Sol, tiene un movimiento de rotación alrededor de su eje. Por tanto, el momento angular total de la Tierra es la suma vectorial de su momento angular orbital y su momento angular de rotación alrededor de su eje.

Por analogía, un electrón ligado a un átomo también gira sobre sí mismo, pero no podemos calcular su momento angular de rotación del mismo modo que calculamos el de la Tierra en función de su masa, radio y velocidad angular.

La idea de que el electrón tiene un movimiento de rotación fue propuesta en 1926 por G. Uhlenbeck y S. Goudsmit para explicar las características de los espectros de átomos con un solo electrón. La existencia del espín (rotación) del electrón está confirmada por muchos resultados experimentales, y se manifiesta de forma muy directa en el experimento de Stern-Gerlach, realizado en 1924.

 

Descripción

Se postula la existencia de un momento angular intrínseco del electrón llamado espín S . Como el electrón es una partícula cargada, el espín del electrón debe dar lugar a un momento magnético µ intrínseco o de espín. La relación que existente entre el vector momento magnético y el espín es

donde g se denomina razón giromagnética del electrón, su valor experimental es aproximadamente 2.

spin.gif (1364 bytes) El número de orientaciones del vector momento angular respecto a un eje Z fijo es 2S+1, tenemos para el caso del espín S=1/2 que la componente Z tiene dos valores permitidos . Por lo que

mB se denomina magnetón de Bohr.

Descripción

Sabiendo que carga del electrón e=1.6·10-19 C, la masa m=9.1·10-31 kg y la constante de Planck =6.63·10-34/(2p) Js. Obtenemos    µB =9.27 10-24 Am2.

La energía de un dipolo magnético  µ en un campo magnético B que tiene la dirección del eje Z es el producto escalar

U=-µ·B=-µz·B=±µB·B

Si B es variable en la dirección Z, el dipolo magnético experimenta una fuerza

fuerza.gif (1213 bytes) que lo desviará de su trayectoria rectilínea. Si el dipolo magnético es paralelo al campo magnético, tiende a moverse en la dirección en la que el campo magnético aumenta, mientras que si el dipolo magnético es antiparalelo al campo magnético se moverá en la dirección en la que el campo magnético disminuye.

 

En el experimento se usa un haz de átomos hidrogenoides, como plata, litio, sodio, potasio y otros que constan de capas electrónicas completas salvo la última en la que tienen un electrón. El momento angular orbital l de dicho electrón es cero, por lo que está en el estado s.

Se selecciona un haz de átomos de una velocidad dada y se le hace atravesar una región en la que existe un campo magnético no homogéneo, tal como se muestra en la figura.

dispositivo.gif (3211 bytes)

  1. Movimiento del átomo en la región en la que se ha establecido un gradiente de campo magnético
    Suponiendo que el gradiente de campo magnético es constante, la aceleración a lo largo del eje Z es constante, a lo largo del eje X es cero. Tenemos un movimiento curvilíneo bajo aceleración constante.

parabolico.gif (1019 bytes)

Si la región en la que hay un gradiente de campo magnético tiene una anchura L, la desviación que experimenta el haz, véase la figura, vale

  1. Movimiento del átomo fuera de dicha región
    Cuando el átomo de masa m abandona la región en la que hay un gradiente de campo magnético, sigue una trayectoria rectilínea con velocidad igual a la que tenía al abandonar la citada región. Las componentes de la velocidad serán

rectilineo.gif (1080 bytes)

La desviación total en la pantalla será

Midiendo d despejamos en dicha ecuación el valor        µdel magnetón de Bohr.

Para la comprobación del resultado experimental